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Abstract. We study the effeck on heat diffusion related to the presence of a 
quenhed disorder of impurities at the boundaries. A simple lattice model sum- 
marizes the main chmacteristics of the surface through which the heat flux input is 
produced. The disorder induces temperature fluctuations which are proportional to 
the imposed temperature gradient and depend on the distribution of impurities. The 
existence of a non-linearity in the boundary conditions leads to the renomalization 
of the Nusselt number. 

1. Introduction 

Transport phenomena, or in particular diffusion in disordered systems, exhibit a great 
number of interesting effects that have been extensively studied during the last few 
years (for areview see, for example, [l]). The disorder is responsible for the appearance 
of anomalous diffusion as the diffusing particles may get trapped in some parts of the 
disordered geometry and hence the dynamic properties are modified. This is what 
happens! for example, in porous media [2] or in fractal structures [3]. Most of these 
subjects have been analysed with the use of discrete models on which a random walker 
is followed in time and the different probability densities are described by means of 
scaling laws. 

Our purpose in this article is to address the problem of heat diffusion in systems in 
which the disorder enters the analysis through houndary conditions. We then assume 
that,  in the process of heat diffusion, one of the boundaries of the system contains 
impurities which are randomly distributed in such a way that the heat transfer from the 
boundary t o  the bulk is a random quantity which induces temperature fluctuations in 
the system. We shall see that the correlation functions exhibit the peculiar behaviour 
of non-equilibrium fluctuations: they are proportional to the external gradients and 
they are long-ranged [4]. Moreover, the presence of non-linearities gives rise to the 
definition of a renormalized Nusselt number which depends on the random distribution 
of impurities a t  the boundary. 

To this end we have organized the article as follows. In section 2 we describe 
our physical model. I t  consists of a system bounded by two parallel plates which are 
kept at different temperatures. One of the plates contains a random distribution of 
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impurities which introduces a Gaussian stochastic process, delta-correlated in space. 
The underlying discrete model could be a lattice whose sites are occupied by two types 
of materials with different heat transfer coefficients which are randomly distributed in 
the lattice. In section 3 we show that the non-linearity in the fluctuations, introduced 
through boundary conditions at  the plate, gives rise to a renormalized or effective 
Nusselt number. This dimensionless number controls the heat conduction in the bulk 
and contains corrections which are proportional to the intensity of the static noise. In 
section 4 we compute and analyse the stationary correlations and in the last section, 
we summarize our main results. 

2. The model 

We consider a system bounded by two plates at y = 0, L ,  and of infinite extent in the 
x and L directions. The upper boundary (y = L )  is assumed to be kept at temper- 
ature T, whereas the lower one (y = 0) is neither perfectly conducting nor perfectly 
insulating (see figure l (o ) ) .  At this boundary the heat flux is specified through the 
Newton law of cooling [5]. Therefore, the stationary state can be identified from the 
solution of the boundary value problem defined through the differential equation [6] 

and the boundary conditions 

TAT) ly=L = TL (Dirichlet) 

Here T,(T)  is the stationary temperature, a the thermal diffusivity, X the thermal 
conductivity, E ( T ~ ~ )  the heat transfer coefficient, which is assumed to depend on the 
spatial coordinates parallel to the boundaries ( x  and z), and To the temperature of 
the reservoir which is in contact with the boundary located at  y = 0. This problem 
should be distinguished from the one treated in [lj in which we addressed the problem 
of thermal noise arising from fluctuating boundary conditions. 

We will assume that the lower plate contains a random distribution of impurities 
in such a way that the heat transfer coefficient may be considered as the sum of the 
mean value E,, and a random contribution E ~ ( T ~ , )  

E(TII) = &O + ER(TII ). (2.3) 

The random term is modelled by a Gaussian stochastic process of zero mean and 
correlation 

(ER(TII)ER(T'Il)) = A S ( T I I  - "11) (2.4) 

where A is a constant accounting for the intensity of the noise. 
A very simple lattice model can be constructed keeping the essential features of 

our system (sec figure l(b)).  One can imagine a lattice in which any site can be 
occupied with probability p(l - p )  by some material of heat transfer coefficient E~ 
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(, , l  I b )  
Figure 1. ( a )  is a schematic drawing of our system. The space bounded by two 
parallel plates, in contact with heat sources at different temperatures, is filled b y  
a heat conducting medium. In  one of the boundaries, the quenmed disorder of 
impurities is the origin of a stochastic heat flow from the plate to the system, giving 
rise lo temperature fluauatiorrr. In ( b )  we have represented the corresponding lattice 
model of the boundary. The sites of the lattice are occupied with probability p ( 1 -  p )  
by some material of heat transfer coefficient ci(~2). l h e  distribution has a mean 
value EO 

( E ~ ) .  Redefining c i r  such that 
zero mean and second mornent 

- E ,  - E ~ ,  it  describes a stochastic process with 

( E ( i ) E ( j ) )  = P(I - P ) ( E ~  - ~ ~ ) ~ b . .  ‘ I  ( 2 . 5 )  

where i and j denote lattice sites. This expression can be readily generalized to 
higher order moments where one notes tha t  such a process is not Gaussian. The  next 
step is to construct a coarse-grained version of this model in which Kronecker deltas 
become Dirac deltas multiplied by 1 2 ,  I being the lattice spacing or,  in other words, 
the characteristic size of the impurities. In this case the non-Gaussian contributions 
become negligible and  this model is suitably described by an intensity of the noise 
A = p(l - p)(el - ~ ~ ) * 1 ~ .  

It is clear tha t  the temperature at any point of the system will be affected by the 
presence of the impurities. To study this effect we must solve, first of all, the boundary 
value problem and obtain the formal solution for the temperature. To this end it is 
convenient to obtain the expression for the Green function [SI, which is defined as the 
solution of 

which satisfies boundary conditions similar to ( 2 . 2 ) ,  but now with 
since 

instead of E ,  

enters the formal expression for the  teniperature, 

G(y,y’; fill) l Y z L  = 0 (Dirichlet) 
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The Green function satisfies the reciprocity relation consistent with (2 .6)  

G ( Y , Y ' ; ~ I I )  = G ( Y ' , Y ; ~ I I ) .  (2.8) 

The solution of (2.6)-(2.8) is found to be 191 

where N E E ~ L / A  is the Nusselt number and use has been made of the definitions 
y, E max(y, y') and y< E min(y, y'). Furthermore, we have introduced the Fourier 
transform in the parallel vector T~~ 

(2.10) 

where kll = (k=, t ,) and r$ is an unspecified field. 

T.(kll,y) = (2r)26(kll)Q,(Y) + : G ( ~ , O ; k l l ) ~ ~ ( k l l )  @ [T.(kll,O) - (2~)~6(hl l )To]  

Knowledge of the Green function enables one to arrive at  the formal solution 

(2.11) 

This expression involves two contributions: the first one corresponds to the determin- 
istic stationary profile according to (2.1) and (2.2),  whereas the second, proportional 
to the random part cR,  accounts for the presence of impurities a t  the boundary. In this 
last contribution E k is a convolution operator whose action upon an unspecified 
function +(kll) is defined as 

R( 11) 

(2.12) 

Note that if the lower boundary is homogeneous (cR = 0), equation (2.11) reduces to 
the stationary value 

(2.13) 

This expression is similar to the stationary profile obtained when connecting the sys- 
tem with two thermal sources a t  constant temperatures. In our case, however, the 
temperature gradient is given by 

IVQ,l = - V T  
l + N  

(2.14) 

where V T  E (TL - To)/L is the external gradient. Thus, the zero Nusselt limit 
(perfectly insulating boundary) corresponds to the equilibrium state, according to 
(2.13), in which the temperature is constant and equal to T,. When N is very large 
(perfectly conducting boundary), equation (2.13) tends to the stationary temperature 
for a system under a temperature gradient. 
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3. Stat ionary mean value and renormalized Nusselt  number 

Our purpose in this section is to find an expression for the stationary mean value of 
the temperature. The starting point will be the formal solution (2.11). One should 
realize that its right-hand side depends on the temperature T'(kII, 0) that follows from 
that equation by setting y = 0. Combining (2.11) with the expression for Ts(kll,O), 
one arrives at 

TdJ-lll~) = (2r )*4(~ )6 (+1)  + fG(O,~ ;k l l )~~(k l l )  

(3.1) 
1 

@J @ (2*)2Q.(o)wq) 
1 - (a/A)G(O,O; kll)ER(kII) 

where we have taken To = 0 without any loss of generality. Now we proceed to expand 

the propagator 11 - (a/A)G(O,O; hll)ER(k!l)] 
- 1  

in powers of E ~ .  We then obtain 

o( "+1 m 

T3(kll,Y) = (W2%(Y)~(kI l )  + (7) G(O,y; kl l)dkl l)  
n=0 

@ G ( O , O ; ~ ~ ~ ) E R ( ~ I I )  @ ' .  . @  G(0,O; k l l ) ~ R ( k l l )  @(277)26',(0)6(kll). (3 .2)  
+ , 

n times 

Our next step is to take the average of (3.2). One gets 

(T*(kII,Y)) = (WQS(Y)6(kll) 
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To proceed further with the development we will again use the fact that cR is Gaussian 
in order to factorize the fourth moment. One arrives a t  

This equation simplifies to 

(Ts(kll-Y)) = (2~)2~s (Y)6(k l l )  + ( ~ ) 2 ~ ~ ( ~ ) G ( 0 , y ; 0 ) ( 2 n ) 2 A H 1 6 ( 1 ; 1 1 )  
4 + ( y )  B,(0)G(0,y;0)(2n)2A26(kll) [C(O,O;O)H: + H, + H,H,] + ' ' '  

(3.7) 

where use has been made of the definitions 

(3.10) 

From the definition of the propagator (cf equation (2.9)) one concludes that the 
integrals introduced through (3.8)-(3.10) diverge for large wavenumbers; for this rea- 
son we must introduce a cutoff wavenurnber k,  which is the inverse of a characteris- 
tic microscopic length of the interface that may be identified with the mean size of 
the impurities ( I ) .  Thus the integrals behave as H, - kcL, H ,  .. k,Lln(k,L) and 
H ,  - In(k,L), for N < k,L. Taking this fact into account, it turns  out that  the 
main contribution in the term proportional to A2 is H:, the same holding for suc- 
cessive terms in the expansion. This consideration enables us to recover the general 
expression for the temperature 

(3.11) 

There exists a physical reason for we restricting ourselves to the case N << k,L. 
From the definition of the Nusselt number and the fact that kc - I - ' ,  one arrives a t  
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N / k , L  = I/(A/&,) where is a characteristic length parallel to the boundary. In  
order for the coarse-graining procedure to make physical sense it is necessary for the 
ratio I / ( X / E O )  to be much less than one. 

Substituting B,(y) and the propagators for their explicit values we get 

-aL AH, + N - z  -- { Ll[ A’ 1 + N I n } ; ]  
(3.12) 

which, taking the series as an expansion in powers of the term within the innermost 
square bracket, may he written in a much simpler form as follows 

(3.13) 

This equation is identical to the stationary and noiseless temperature (2.13) with a 
renormalized Nusselt number 

where we have introduced J as a dimensionless integral proportional to H ,  

z sinh z 

N sinh z + I  cosh z 

b,L 
dr 

= & (3.15) 

which may he approximated by kcL,  for N < kcL.  In this case, we finally obtain 

(3.16) 

This effective Nusselt number depends on the physical properties of the bulk, such as 
heat conductivity and length, as well as on those due to the presence of the impurities 
a t  the boundaries by means of the intensity of the noise and the cutoff wavenumber. 
When replacing A by its value in terms of the microscopic interface properties, one 
gets 

k c L  
- ”> (3.17) 

for which the largest correction is obtained when p = 0.5, E~ = 0, and therefore 
c0 = t L / 2 .  For NJk,L E 0.1 this correction is about 10%. As we shall see in the next 
section, the effect of the impurities is important only in a layer close to the surface, 
Thus, since N accounts for an overall effect, i t  is reasonable to get a small correction 
to the Nusselt number. 
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4. Static correlation function 

In this section we will compute the static correlation function from the expression 
for the stationary temperature (2.11), in which we keep To # 0 in order to make a 
comparison with thermal noise. We will perform such a calculation up t o  the lowest 
order in the intensity of the noise; in this case, different contributions arise and the 
correlation function reads 

(T(kll> Y ) W ' l l ,  Y')) = (21F)48~(Y)8,(Y')6(lell)6(k'll) 

+ (W4 (:)'AH1 [W) - To] [&(y)G(O,y';O) 

+ (24' (f) A [4(0) - 4I2G(O, d;+l)W U; 6$6(kll + k'll) 

+@,(y')G(O, Y;O)I 6(kll)6(k'11) 
2 

(4.1) 

where the integral H ,  has been defined in the previous section. Transforming back to 
the real space, we get 

( x ( r ) q ( 4 )  = @*(Y)@,(Y') 

(4.2) 

Xote that in this expression, the correiaiion iunciion is transiaiionai invariani oniy 
in a plane parallel to the boundaries. After some straightforward manipulations, one 
may arrive at  the static temperature correlation function 

x G(O,Y;$~)G(O,Y'; til) (4.3) 

where 6T(r) 3 T,(r) - B,(y) is the temperature fluctuation and Jo  is the Bessel 
function of first kind and zeroth order. From this last expression, one may arrive at 

(6T(r)6T(r')) = ( V T ) ' A l ( y , y ' : r ; N )  (4.4) 

where use has been made of the definition 

Here 7 E (rII - r' 1 and we have introduced the cutoff wavevector, related to the 
discrete nature of t\e interface, as in the previous section. Instead of solving for I in 
a general situation, we will illustrate the behaviour of the integral in two interesting 
and representative cases. 
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4.1. Correlations at the surface 

In this case we will consider y = y' = 0 and r # 0. If r / L  > 1,  then J 0 ( z r / L )  Q: 1, 
with z E [0, k,L] ,  and therefore Zl ( r ,  N )  E I(0,O; I ;  N )  < 1 .  On the other hand when 
T I L  > 1 the integral I, is found to behave as 

where A and B are unknown functions of the Nusselt number. In figure 2 we have 
represented I, as a function of the decimal logarithm of T I L ,  for different Nusselt 
numbers. According to the plot, we realize that A ( N )  -2. These results show 
that the correlations at the surface decrease smoothly with the ratio r / L  and have 
important vaiues for N- = I - 10'. 'l'his fact must b e  emphasized because it points 
out that the non-equilibrium state of the system makes the delta-carrelated noise at  
the surface to transform into a long-ranged noise in the bulk. 

~ . "  -. . 

h , , J  T I L )  

Figure a. Long-ranged correlations at the surface. The integral I ,  is plotted as B 

function of the decimal logarithm of the ratio T I L .  for differat Nurrelt numberr. 
Curver labelled ( a ) ,  (a),  ( c )  and ( d )  correspond to N = 0.1, 1, 10 and 100, respec- 
tively. 

Finally, from (4.5) we conclude that these correlations are practically insensitive 
to the particular value of k,L.  In fact, one has 

2 ---("> all 1 Q:1  
a k , L -  k,L 1 i N  (4.7) 

provided that the condition k,L > 1 holds. 
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4.2 .  Correlations in the bulk 

Here we will analyse the correlations for y = y' and r = 0. In this case, the integral I 
becomes 

sinh[z( 1 - 8)) 
rz(y,  N )  q y ,  d = y;o; N) = ( ) ' L c L d z r {  N sinh z + z cosh z N + l  

- 

where 8 ? y/L. To study the behaviour of l2 one should first realize that 

just as in the previous case; moreover, it is easy t o  show that I,(y = 1 , N )  = 0, 
aI,/ay(,+, < 0 and a12/dplg,l = 0. To analyse the dependence of I z  with y i t  is 
convenient to separate the integral appearing in (4.8) from the prefactor containing 
the Nusselt number. Accordingly, we define 7, e 12(N + 1)'/N2. Then, one may also 
show from (4.8) that f 2 ( S  = 0 , N  = 0) II log(k,L), and 

(4.10) 

(4.11) 

Equation (4.10) indicates that the decay of the correlations with the ratio y/L is very 
fast in the neighbourhood of y = 0, but  this is no longer true away from this point, as 
follows from (4.11). Although N = 0 is not a representative case, since I2 = 0, it is the 
only value from which analytical results can be obtained and the behaviour for larger 
Nusselt numbers is not qualitatively modified. In figure 3 we have represented I2 as 
a function of y, for different Nusselt numbers. In view of this plot, we conclude that  
the noise is important in  a macroscopic layer around y = 0, the thickness of which, 
6, being a function of the Nusselt number. Due to the prefactor in (4.8) containing 
the Nusselt number, 6 amounts to negligible values for N < 1 ,  but  takes important 
values in the opposite case, the maximum taking place fo: N II 1. To investigate this 
dependence we will compute the average of the integral 1, over the whole system 

P L  
(fZ(N)) - /  dyfz(Y,N). (4.12) 

The double integral involved in this expression can be analytically computed, arriving 
at  

L o  

(4.13) 
1 1  tanh( 12, L )  1 

(f2(N)) = 2 [m - N tanh(k,L) + k , L ]  e 2(N + 1)' 

This expression indicates that  6 depends smoothly on N for N < 1, and decreases as 
N-' in the opposite case N > 1. Plots in figure 3 show that the proper behaviour of 
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1 .o 

1 2  

0.1 0.2 

!llL 

Figure 3. The integral 12 accounting lor the correlations in the bulk is plotted as a 
function of the dimensionless coordinate g, for different Nusselt numbers. Labels ( a ) ,  
[a ) .  [ c )  and ( d )  indicate N = 0.1, 1. 10 and 100, respectively. When9 approaches 0, 
12 grows very rapidly, hut I ? ( g  = 0. N )  remains finite. It vanishe for N = 0 whereas 
SortheothervalueswehavechosenIz(s=O,N = 0 . 1 ) ~ 0 . 1 , I z ( g = O , N =  1 ) ~  2.0, 
h ( 9  = 0 , N  = 10) E 4.9, and I z ( y  = O , N  = 100) E 3.5.  

Iz is a balance between this N-dependence of 6 and the fast decay for N < 1 due to  

Expression (4.13) also allows us to illustrate the importance of the disorder-induced 
noise by comparing the average of (4.4) over the whole system with the mean-square 
fluctuation of thermal noise [lo]: ((ST)'), = k B o T i / X L ,  k ,  being the Boltzmann 
constant. We then get 

the pr&&r N"/(.N + 1)' appearing i. (4.8) in z&$?ion of A? 2' 

where we have introduced the non-equilibrium parameter 0 = (TL - TO)/T,,.  When 
p = 0.5, c2 = 0 and E,, = E J ~ ,  and for typical values of the other involved parameters, 
X/a y low5 J m-l K - I ,  L 2 m, 0 2 lo-' and k,L 2 IO4, this ratio yields 

(4.15) 

which clearly indicates the predominance of quenched noise over the thermal one, 
specially in the regime N TZ 1 

5 .  Discussion 

In this article we have analysed the phenomenon of disorder-induced temperature 
fluctuations in non-equilihrium systems. To this purpose we have introduced a model 
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accounting for the process of heat transfer in a system between two parallel plates. One 
of them is modelled as a lattice whose sites are occupied, with different probabilities, by 
grains of two materials with different heat transfer coefficients. The random occupancy 
then gives rise to  a stochastic process for the heat transfer coefficient of the plate whose 
correlation is given by equation (2.4). This correlation exhibits a maximum value when 
the probabilities are equal and for very different values of the heat transfer coefficients, 
provided that the mean heat transfer coefficient is fixed. 

The stochastic process defined at the plate induces temperature fluctuations whose 
correlations are proportional to (VT)’ and ( E ~  - c2)’. We then conclude that this 
effect takes place in non-equilibrium systems under a temperature gradient and dis- 
appears when both materials have the same heat transfer coefficient. Moreover, these 
correlations are more important than the ones originating from thermal noise and 
exhibit long-range behaviour [4]. 

Another interesting aspect we have analysed here is the renormalization of the 
Nusselt number due to a non-linearity whose origin is the presence of quenched fluc- 
tuations at the interface. This dimensionless number, controlling the heat transfer, is 
then modified by a term which is proportional to the intensity of the noise. 
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